题意
Sol
和cf上的一道题几乎一摸一样
首先根据期望的线性性,可以转化为求每个点的期望打开次数,又因为每个点最多会被打开一次,只要算每个点被打开的概率就行了
设\(anc[i]\)表示\(i\)的反图中能到达的点集大小,答案等于\(\sum_{i = 1}^n \frac{1}{anc[i]}\)(也就是要保证是第一个被选的)
#includeusing namespace std;const int MAXN = 1001;inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f;}int N;bitset f[MAXN], Empty;double solve() { N = read(); for(int i = 1; i <= N; i++) f[i] = Empty; for(int i = 1; i <= N; i++) { int k = read(); f[i].set(i); for(int j = 1; j <= k; j++) { int v = read(); f[v].set(i); } } for(int k = 1; k <= N; k++) for(int i = 1; i <= N; i++) if(f[i][k]) f[i] = f[i] | f[k]; double ans = 0; for(int i = 1; i <= N; i++) ans += 1.0 / f[i].count(); return ans;}int main() { int T = read(); for(int i = 1; i <= T; i++) printf("Case #%d: %.5lf\n", i, solve()); return 0;}